

# New Developments in Magnet Insulation

VLHC Magnet Workshop

Port Jefferson, NY November 16 - 18, 1998

Presented by:

Michael L. Tupper

#### COMPOSITE TECHNOLOGY DEVELOPMENT, INC.

1505 Coal Creek Drive • Lafayette Colorado 80026

Ph: (303) 664-0394 • Fax: 9303) 664-0392

www.CTD-materials.com



### New Insulation Developments

- CTD's experience with magnet insulation
- Goals for new magnet insulation
  - performance improvement
  - cost savings
- On-going development effort (SBIR's)
  - Wrappable inorganic insulation
  - Low viscosity, radiation resistant resins
- Future research concepts
  - Nb<sub>3</sub>Tn and A15
  - HTS
  - NbTi



## CTD's Insulation Experience

- Led US effort to develop and evaluate magnet insulation for ITER
  - ITER CS Model coil utilizes CTD insulation
  - NSTX coils
  - Repair of Alcator coils
- Participated in several accelerator magnet efforts
  - including: SSC, Fermilab VLHC, and LBNL high field coils
- Insulation materials used in research and commercial magnets in the US and around the world
  - Commercial MRI coils; mine sweepers; maglev; SC motors
  - NHMFL 45T superconducting coils



#### **Current Insulation Products**

- Vacuum-pressure impregnation systems: CTD-101
- One-part VPI systems: CTD-1PF/LV
- Glass pre-preg system with high radiation resistance: CTD-112P
- Glass pre-preg with 2 year RT out-life: CTD-1PFS
- Kapton® Adhesives:
  - CryoBond<sup>TM</sup> 105 (high radiation resistance)
  - CTD-1PFS/1Z (2 year RT out-life)
- RT Cure wet wind insulation (commercial MRI and Navy mine sweeper coils): CTD-521



#### Goals for New Insulation

#### **Magnets**

- Improve magnet performance
- Reduce magnet costs
- Different insulation for different conductors:
  - Nb<sub>3</sub>Sn and A15
  - HTS
  - NbTi

#### **CTD**

- Be responsive to the needs of the community
- Develop technology which is reasonably attainable
- Pursue technology that makes sense in the market place



#### **Enhanced Performance**

- Mechanical Properties
  - Improve toughness
  - Increase modulus
  - Increase Strength
- Electrical Properties
  - Increase dielectric strengths
  - Enable close packing
- Thermal Properties
  - Match thermal contraction
  - Increase thermal conductivity

- Radiation
  - Reduce organic content
  - Reduce outgassing
- Chemical Compatibility
  - Address poisoning issues in A15 and HTS
- Reduce fabrication cost



#### Improved Processing

- Wind and react
  - co-react insulation with superconductor
  - reduce manufacturing time
  - reduce manufacturing cost
  - increased coil complexity
- Lower viscosity
- Longer pot life
- Lower processing temperatures
- Reduce health and environmental concerns

- Improve reliability
- Reduce risk
- Systematic optimizing of insulation system, processing and application procedures
- Develop insulation application processes that enable greater latitude for the coil designer



### Wrappable Inorganic Insulation

#### On-going SBIR Phase II

- Description
  - High strength and modulus of a ceramic composite
  - Ease of processing of an organic insulation
  - Applied prior to heat treatment
  - Processed from 600°C to 900°C
  - Processing
    - apply ceramic insulation
    - cure and heat treat
    - impregnate with CTD-101K

- Benefits
  - Ideal for wind and react processing
  - Improved properties
    - doubled the modulus
- Accelerator coil evaluation
  - Fermilab & LBNL
  - Applying insulation directly to conductor cable
  - Pre-preg and VPI processing



#### Compression Modulus



**Insulation System** 



### Compression Strength





#### Flexural Modulus



**Insulation System** 



#### Apparent Shear Strength





## Low Viscosity, Radiation Resistant Insulation

#### On-going SBIR Phase I

- Goal
  - Develop stronger more radiation resistant resins
  - With low viscosity and long pot life at room temperature
- New Formulations
  - Based on aromatic chemical structure, similar to polyimides
  - Demonstrated greater radiation resistance than epoxies
  - Lower out gassing
  - Excellent mechanical properties

- Traditional aromatics
  - Normally solid at room temperature
  - Require high temperature and pressure cure
- Comparison to epoxies
  - Lower room temperature viscosity
  - Should enable lower temperature processing
  - Epoxies only ~50% aromatic



#### Phase I Accomplishments

- Successful hybridization of different chemistries
- Low initial viscosity at room temperature
  - As low as 100 centipoise at 25°C
- Long room temperature pot life
- Additional Phase I work planned
  - Differential Scanning Calorimetry (DSC)
  - Flow characterization
  - Coupon testing



### Typical Viscosity Curves





## Concepts for Nb<sub>3</sub>Sn and A15 Coils

- All inorganic insulation
  - Increase mechanical properties
  - Reduce thermal shrinkage
  - Improve radiation resistance
- Benefits
  - Eliminate post heat treat epoxy impregnation
  - Obtain the highest/best combination
    - strength
    - modulus
  - Co-processed with superconductor
- Examine chemical compatibility



#### Concepts for HTS Coils

- Ceramic based co-processed insulation and barrier coatings
  - Chemical compatibility
    - Systems with and without barriers
    - especially looking zirconia based systems
  - Look at subtleties of different HTS conductors
  - Characterize Mechanical, electrical, and thermal properties
- Advanced Polymer based systems
  - enable close packing of conductor
  - ease of application onto brittle conductor



## New Concepts for NbTi Coils

- Inorganic/Organic Hybrid Insulation
  - Low viscosity for ease of vacuum impregnation
    - cures similarly to an epoxy
  - High inorganic content
    - increased modulus
    - improved radiation resistance
    - lower thermal shrinkage
- Advanced B-stage adhesives and pre-preg resins for Kapton® and glass tape
- Combination Kapton®/Glass tape insulation
  - enabling close packing
  - Dielectric of Kapton®, Strength of glass



# Want to Hear the Needs of the Community

